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NOTRIUON

Vibrational energy transfer during collisions of a thermal distribution of gas

molecules with a solid surface is a subject of current interest. A variety of

substrate molecules have been examined on various surfaces including fused silica

(1.21. pyrex glass (31. polycrystalline iron (41. platinum (5 and gold (61. Some of

the work (2.4.51 concerns measurements of vibrational accomodation coefficients. i.e..

probes the lower end of the vibrational energy distribution resulting from collision.

The work in this laboratory (1.3.61 has dealt with vibrational excitation of substrate

molecules to levels above the unimolecular reaction threshold E0 (-30-65 kcal
3 -1

mole ). In this case. E0 acts as the absorbing barrier postulated in the original

random walk treatment of Rubin and Shuler (71.

The surfaces used in the work Cited above are not *clean*. being rapidly

covered at the substrate pressures employed. In particular, they are deliberately

•seasoned" at high temperatures in our work: the seasoned surface is ostensibly

covered with a graphitic polymeric layer whose nature may be related to those

described by Somorjalo et al (81. However. the nature of the underlying matrix.

e.g. whether gold or silica. may continue to influence the nature of the layer

formed by surface treatment and its energy transfer properties (61.

The variable encounter method (VEM) used in this laboratory has been

described in detail [1). Including the single collision variant thereof (31. In general.

cold ,oOlecules thermalized at some lower temperature are permitted to collide with

a heated surface. called the "reactor'. In fitting the observed energy transfer

results of VEM studies, various trial analytic forms of the collisional transition

probability matrix E have been used [1.3.91. Prominent among these have been

Exponential E). Gaussian (() and Boltzmann-exponential (BE) forms: the elements of

the latter two obey the following relations for down-transitions (energy loss) by the

molecule:

In
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pG(E) C expl-(ME-AEm )2120 2]  (1)

where AE E -E I (Ej >E 1 ); AE Is the most-probable transition; a is the
I 1 3~AE mp

standard deviation; C Is a normalization constant;

pE (AE.Th)" C B exp(-AE/<AE>) (2)

where a I - g exp(-E, /RTh) is a Boltzmann weighting. Th being the hot reactor

surface temperature: <AE> is an average energy transfer parameter; normalization

extends over all energies. and up-transition probabilities are found by detailed

balance. it transpires that several transition probability models will often it a

particular range of results although the E form has been found more apt for

weaker collisions, and the G form for stronger collisions: the BE form will obviously

approach the strong collision limit when <,E> becomes very large.

In an attempt to distinguish better the suitability of various models. Arakawa.

et al 19] studied single collision excitation of cyclobutene isomerization on a hot

seasoned silica surface maintained at various temperatures and varied the initial

vibrational energy, i.e.. the initial (cold) temperature T0 of the substrate, from 273

K to 600 K. Although the E model could be ruled out, both the G and BE models

gave reasonable fit to the data taken at silica surface "reactor" temperatures from

600 K to 900 K (see Fig. 3 of ref. 9a). However, as may be seen from Fig. 1

(for reactor temperature 800 K), these two models make different predictions

concerning both the magnitude of the accomodation coefficients a (aG Z 1:

a B E < 1). and the form of the population distribution above E0 . After a single

1 0 0
collision the new population vector Is given by -P N . where N ls the initial

Boltzmann vector corresponding to the original (cold) temperature. (For a strong

collider. I1 becomes h the Boltzmann distribution at the reactor (hot) tempera-

ture.) If PIs partitioned at E0 iLe.. , 1 P 2. then obviously the reaction
0  . P3 P4

probability per collision P depends only on P i.e.. up-transition probabilitiesc -3

'I
. . . .. .. . ..1-
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terminating above E0 . By contrast. measurement of a gives Information only about

C1. At lower energies, 1 follows the equilibrium population curve Nh quite

Closely (hence a - 1), while UBE drops markedly below bh (hence aS E < 1).

Above E0 . U 1 declines more rapidly than N IE. This difference in slope provides

a basis for an experimental test of the relative validity of the two models.

Unfortunately. as may be seen from Fig. 2. this difference in slope above E0 Is

greatly reduced at lower reactor temperatures so that In this system it provides an

adequate basis for experiment only at the highest temperature employed here. 800

K. By changing the flight distance between the. hot surface and a cold wall, the

flight time 7 during which decomposition may take place can be altered. Since the

specific decomposition probability k(E) varies with energy in a range of operational

accessibility (Fig. 1). i.e.. k- (E) = 0M(). it is possible to probe the form of

It may be assumed 13.9.101 that accomodation of cyclobutene on a cold

(-285K-330K) surface Is complete in one collision so that partial cooling and

multiple reflection is not a problem.

",4
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Cyclobutene was obtained from Columbia Chemicals. >99.9%. It was further

purified by gas chromatography.

The reactor (Fig. 3) consisted of a 1-1 spherical pyrex flask provided with an

Internally-heated lathe-aligned central silica cylinder finger having a flat ground

fused silica end H positioned at the center of the flask. The thin ground silica flat

(dam. 3 cm) constituted the hot surface. The internal cylinder was described

previously 131 and was a thermostatted liquid metal bath. S. The wall of the

cylinder was double jacketed and cooled. Facing the silica flat was an overlapping

flat brass surface C which was the end of a water cooled cylinder that moved

smoothly on a screw S with a no-twist. no-play action and pumped O-ring seals.

0. The flight distance between flats was changed from 0.02 cm to 5.6 cm.

Temperature measurements were made with two chromel-alumel thermocouples which

dipped into the liquid metal alloy inside the finger. The temperature of the hot

bath was varied from 550-820 K. The hot silica surface was seasoned with

cyclobutene (*.3 x 10 torr) at 800 K for one hour. The reaction pressure was

0.8-1 x 10- 4 torr. so the system was at the second order region. Cyclobutene

Isomerizes to 1.3-butadiene. No by-product was found on a FIO chromatographic

system. Every experimental point shown in Fig. 4 was the average of three to four

separate measurements. Samples were admitted to the flask for a period of time

that produced 1-5% reaction usually. Analysis was made on a SCOT squalane

column or on a 3/16" packed squalane column on Chromosorb P.

9
Q
.
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asualts and Calculauons

Four average flying distances were tested: 0.046. 0.126, 0.32 and 5.6 cm.

For the former three distances, the temperature of the cold brass surface was -285

K. For the longest distance (the finger completely retracted). the wall of the flask
S

was heated slightly by the hot surface and was maintained at -320 K. This made

a slight change in the number of collisions at given pressure with the hot surface.

and in the initial Boltzmann distribution. The latter effect is slight and could

readily be reduced to 285 K by use of the measurements in ref. 9a.

As before (101. the unimolecular reaction obeyed the first order law with

respect to time. From the experimental rate constant k, the reaction probability per

collision P is given by (Appendix A). P - 4kV/ca. where V is the volume of the

C C
reactor: a is the area of the hot surface: c is the average speed of the

molecues. A Pc vs. Th plot is shown in Fig. 4. The plot of Pc vs. flight

distance. d. is given in Fig. 5 for T= 800 K.

P C values were also calculated by computer simulation.

* PC = ,,NI(E.T)IlI-e'k(E)T(d.T)JdE / f4N (E.T)dE

kE) Is the microscopic rate constant according to RRKM theory: T(dT) is the flight

time: d is the average flight distance. By fitting Fig. 4. the parameters <AE> and

AEmp to be used in ,, in order to generate l1 were deduced at several

temperatures over the range used. in Table 1 are given resulting values of

<AE >. the average down-jump step. and a. for the two models under

consideration. Calculated plots of P are compared with experiment at 800 K in

Fig. 5.

RRKM values of k(E) shown in Fig. 1 were calculated with use of activated

complex model A given by Elliot and Frey i11. Their complex C has also been

used but does not give as good concordance: this is considered furtner below.

The frequencies used for the molecule and complex are tabulated in Appendix B.

"i

."4
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Reference to Table 1 reveals reasonable concordance between the values of

this study and the values of ref. 9a for both the average down-step s1ze. <E >.

and the vibrational accomodation coefficients, a.

The 0 and BE models when compared with experiment in the plot of PC

vs. T In Fig. 5 reveal better concordance for the former model. Both calculations

were adjusted by a few percent so as to fit the 800 K data. The absolute values

of k(E) are sensitive to the choice of activated complex models, and thus also Is

the goodness of fit of calculated values to experiment. Use of activated complex C

of Elliot and Frey would not give as good absolute agreement but. nevertheless,

model G still gives relatively better concordance than does model BE. We conclude

that the gaussian collisional transition probability model is the preferred one and

that, on silica, vibrational accomodation coefficient values close to unity are also

favored.

The only comparable data are those of ref. 2 for octane on fused silica for

which Intermediate values (w0.5) were reported in measurements made at lower

vibrational energies, well below reaction threshold values. Since octane is a higher

boiling species, with a larger Lennard-Jones force constant than cyclobutene, a

smaller a value is not expected. The discrepancy may suggest an energy transfer

model Intermediate between the two tested here. Our use of models such as E. G.

etc., now and In the past. has been simply as pragmatic analytic forms having

somewhat different properties and differing physical connotations (121. There is an

urgent need for the efforts of theoreticians to make the admittedly difficult

connections with solid state and molecular properties and potentials and with

elgenstate densities. This need exists also because of the practical Importance of

thermal high-energy phenomena.

.,
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The fit of calculations to experiment (not shown) Is not as good at 700 K

and 600 K. although the G model continues to be preferred. As mentioned earlier,

the operational distinction between the two models decreases, but another difficulty

Is the heavier and Irregular dependence of k(E) on the complex model details at

lower temperature and energies where k(E) ceases to behave as a smooth

monotonic function of E. This difficulty would be minimized in the examination of

larger molecules having more, and more-dispersed. vibrational frequencies. and with

a consequent wider range of energies probed above E0 at given t ;grature -

apart from any fundamental difficulties of the rate theory at energ njear the

reaction threshold [131. Decomposition, rather than isomerization syste would be

more favored In order to keep values of kE) up in the experimentak, accessible

range.

.7.
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Table 1. Average energy transfer down-step <AE I> (cm ) and vibrational
a

accomodatlon Coefficient a in the singile-coi lion cyclobutene system.

Th(K) Model <AE > a

800 4330 (4 100)b 0.95 (0.94) C

*700 64940 (4200) 0.98 (0.97)

600 5550 (5640) 0.96 (0.96)

800 4230 (3500) 0.26 (0.20)

700 BE 5590 (4450) 0.33 (0.24)

600 6580 (6400) 0.38 (0.33)

aFor an initial temperature T0 of 285 K.

b Parenthetic values are average values from ref. 9a for Initial temperatures over

the range 273 K - 600 K.
C Values from ref. 9a for Initial temperature of 273 K.
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Appendix A: The calculation of collision rate and P values.

When the flight distance Is long. the collision rate with the hot surface is

obviously governed by the flask temperature, TO. If the flight distance Is only

several millimeters or less, the speed distribution of the molecules Inside the

hot-cold gap Is influenced by the temperature of the hot surface. A one-

:- "'dimensional approximation Is suitable for our case. A "reduced" temperature,

T 1/2 = 2(ThT 01/2 / [(h 1 /2+('T 1 / 2 1, should ostensibly be used (141 Instead

of T0 to estimate the collision rate. However, the usual equation for calculating

the P values from the observed rate constant k is still correct In this case.
C

When the steady state is established. N co = N C where N Is the concentration
Sg Nf f

of the gas inside the gap: cg is the average speed of the gas Inside the gap:

1/2
cg= (8RTm/VM) : Is the concentration of the gas outside the gap: cf is the

average speed of the gas outside the gap. Cf = (8RT0 /wM) 1 2

Inside the gap one has the usual equation for calculating Pc

PC = 4k V /C a: where k Is the "real" rate constant of this isomerization reaction

inside the gap: Vg is the volume of the gap: a is the area of the hot surface. in

our experiment Pc Is equal to or less than 10 and the composition of the gas

Inside the gap is the same as the composition of the gas outside. The quantity

actually measured is the total rate constant k based on the whole flask. Then,

k g g/(VfNfgg)3N or kg -k[Vf(Tfl/T 0) 
1/2 +Vg 3 /V 9 and P -

4k[Vf(T 3/To )'/
2 +Vg](TO/T )1 / 2/Cf a .

Because V is much bigger than Vg, PC 4kV /C a.

One further addendum. The distance between hot and cold surfaces. ., is

not the average flight distance, d. Assuming a cosine desorption law. then

=2v W/2 2v v/2d f f Aslneded If f cossinOd~d0 =2L
"0-0 -0-0

S.
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Apendix B: Vibrational Assignment (1131

Molecule (cm 1)*3058. 3126. 9916, 2955(2). 2933. 1568. 1444. 1426. 1288.

31276. 1210. 1182. 1113. 1100. 1074. 988. 875. 850. 846. 800. 640, 635, 325.

Activated Complex A (cm 1 ) 3040. 3030. 3020. 3010. 3000, 2990. 1370,

1360. 1350. 1340. 1330. 1320. 1310. 1032. 1020. 1010. 1000. 990. 980. 680, 670.

Eeo 0 32.0 kcal mol . Reaction path degeneracy =1.

6 V

1



* ~ ~7 -3 7. w

12

References

IK*

Work supported by the Office of Naval Research.

Permanent address: Department of Chemistry and Chemical Engineering. Qinghua

University. Beljing 100084. P.R. of China.

(1) Kelley, D.F.; Zalotal. L.; Rabinovitch. B.S. Chem. Phys. 46 (1980) 379.

(21 Amorbieta. V.T.; Colussi. A.J. J. Phis. Chem. 86 (1982) 3058.

(31 Kelley. D.F.; Kasai, T.; Rabinovitch.. 8.S. J. Phys. Chem. 85 (1981) 1100.

[41 Draper. C.W.; Rosenblatt. G.M. J. Chem. Phys. 69 (1978) 1465. and later work.

(51 Foner. S.N.; Hudson. R.L J. Chem Phys. 75 (1981) 4727.

(63 Yuan. W.; Rabinovitch. 5.8. J. Phys. Chem.. In press.

(71 Rubin. R.J.; Shuler. K.E. J. Chem. Phys., 25 (1956) 59, 68.

181 Koestner. R.J.; VanHove. M.A.; Somorjai. G.A. J. Phys. Chem. 87 (1983) 203.

(91 a) Arakawa. R.; Kelley, D.F.; Rabinovitch. B.S. J. Chem. Phys. 76 (1982) 2384;

b) Arakawa. R.: Rabinovitch. B.6. J. Chem. Phys. 86 (1982) 4772.

[101 Flowers. M.C.; Wolters. F.C.; Kelley. D.F.; Rabinovitch. B.S. Chem. Phys. Lett. 89

(1980) 543; Wolters, F.C.; Flowers. M.C.: Rabinovitch. 5.6. J. Phys. Chem. 85

(1981) 589.

1111 Elliot. C.S.: Frey, N.M. Trans. Faraday Soc. 1966. 62. 395.

1121 Tardy. D.C.; Rabinovitch. B.S. Chem. Rev. 77 (1977) 369; J. Chem. Phys. 45

(1966) 3720.

(131 Schranz. H.W.; Nordhoim. S.; Hamer. N.D. Intl. J. Chem. -Kinet. 14 (1982) 543.

1 141 Edwards. D.K.; Denny. V.E.; Mills. A.F. *Transfer Processes% McGraw-Hill Book

Co.. (1976) p. 154.



i"s13 .

Captions

Fig. 1. Vibrational energy populations for cyclobutene for the reaction condition

(800. 28). is the thermally equilibrated Boltzmann population at 800 K;

the Boltzmann population at the temperature 285 K; - . UBE Is the

population vector after a single collision for the Boltzmann exponential model;

- •" - N. is the population vector after single collision according tO the

Gaussian model. k(E) is also shown In this Figure. E0 - 11.203 cm

Fig. 2. Vibrational energy populations for cyclobutene for the reaction condition

(600. 285). Same notation as in Fig. 1.

Fig. 3. Schematic of apparatus showing hot H and cold C surfaces: internal bath. B.

fitted with heater, stirrer. thermocouple wells and heat baffle, cooled triple wall.

The opposing water-cooled brass surface C entered via pumped 0-ring seal

space. 0. on a screw action. S. that permitted 7 cm of travel. G is a

pyrex/quartz graded seal and M a quartz/stainless steel transition. V are spaced

viewing ports for distance calibration.

Fig. 4. The reaction probability per collision Pc vs. temperature.

0 . A. V 7 refer, respectively, to the average flight distance 5.6. 0.32.

0.126 and 0.046 cm: - - - Is the strong collider curve (E0 - 32.0

kcal mole- 1).

Fig. 5. Pc vs. d (log scale) at 800 K; 0 , experimental points; , Gaussian:

- - - Boltzmann exponential calculations.

S. . . . . .
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